前文着重介绍了MySQL的WHERE条件如何针对单个索引构造对应的SEL_ARG结构,本文是一个补充,将简单介绍多个索引对应的SEL_TREE结构。
对于一个完整的WHERE条件,MySQL会遍历所有可以使用的索引,逐一构造其对应的SEL_ARG结构,所有的SEL_ARG结构以指针数组的形式存放在SEL_TREE->keys中。如果对应索引无法构造SEL_ARG,那么对应的指针为空。 (more…)
在看MySQL优化器代码过程中,这应该是相对较简单/代码较清晰的部分了。MySQL优化器有两个自由度:单表访问方式,多表顺序选择。前文已经介绍过MySQL单表访问的一些考量(ref/range等),本文将介绍JOIN在顺序选择上的复杂度分析。
当有多个表需要JOIN的时候,MySQL首先会处理两类特殊情况,一个是常数表,一个是由于外连接导致顺序依赖关系。前者总是放在关联的最前面,后者会在遍历的时候考虑。本文将忽略上面两点,从较宏观角度看JOIN顺序选择时候的复杂度。 (more…)
登博开了一个头,希望能够往前走一点。泛读了整个MySQL Range优化的相关代码,这里将总结Range优化相关的数据结构。本文不是从宏观(High Level)角度介绍Range优化相关内容,如果看客对此感兴趣,建议绕过本文,直接阅读参考文献,相信会有收获。
已经连续写了几篇关于优化器相关的数据结构的博客了,只是希望需要的人是在需要的时候能够看到。
在开始介绍Range的主要数据结构之前,我们先看Range优化的一些概念和背景。依旧建议先阅读参考文件的[1-8],Sergey Petrunya写的PPT和文档质量都很高,很多图示,非常直观的展示了原理。
(1) 什么是Range条件? 参考Range Optimization@MySQL Manual 单列Range和多列Range
(2) 给定一个KEY(key1)对应的WHERE条件,如何将其转化成一个Range,下面是”简述”,详细参考单列Range:
SELECT * FROM t1 WHERE (key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR (key1 < 'bar' AND nonkey = 4) OR (key1 < 'uux' AND key1 > 'z');
前篇介绍了MySQL存储索引信息的基本数据结构。本篇将延续下去,介绍MySQL如何找到可以使用的索引,以及期间需要使用的主要数据结构。
谁适合阅读: 本文不打算从High Level来介绍MySQL索引及其使用,相反是从MySQL源码对应的数据结构开始介绍。如果你了解MySQL索引的基本原理,还打算继续从源码的角度解决一些索引使用的问题,那么你适合参考本文,否则,打住,真的很枯燥:(。在可见的未来,作者还将介绍Range优化相关的数据结构等。
本文介绍MySQL如何发现WHERE条件中的等值表达式,并通过分析这些等值表达式,找到可以使用的索引。在这个过程中,MySQL将递归的访问所有WHERE条件”谓词”,并将等值表达式都存储到KEY_FIELD对象的数组中。
然后遍历该KEY_FIELD数组,并同时对比所有索引列,找到哪些字段是在索引列中出现,这些字段则可能可以使用索引,MySQL将所有这些字段都存储在对象KEYUSE数组中。
最后,对KEYUSE进行处理,包括排序、删除无法使用的索引列。这时KEYUSE数组就是所有可以使用REF的索引列了。 (more…)
很枯燥的,配首背景音乐吧:
本文将尝试介绍MySQL索引存储相关的数据结构。程序=数据结构+算法,了解数据结构,然后就可以进一步了解MySQL源码中如何使用索引,如何选择自己的执行计划。
MySQL使用TABLE对象来描述一个数据表,那么数据表的索引是如何描述,索引的统计信息又是如何存储的呢? 例如我们有如下数据表:
CREATE TABLE `users` ( `id` int(11) NOT NULL, `nick` varchar(32) DEFAULT NULL, `reg_date` datetime DEFAULT NULL, PRIMARY KEY (`id`), KEY `IND_NICK` (`nick`), KEY `IND_REGDATE` (`reg_date`) )
该表有索引,PRIMARY KEY、IND_NICK、IND_REGDATE,我们来看看MySQL内部是如何存储这三个索引,以及如何使用这些索引的统计信息的。下图,描述了存储一个数据表索引的主要结构: